ESAME DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI: INGEGNERE INDUSTRIALE I SESSIONE 2018 - 14 GIUGNO 2018

SEDE SVOLGIMENTO: POLITECNICO DI MILANO

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

PROVA SCRITTA (PROVA DI SETTORE)

TEMA N. 1

Industria 4.0 è un tema molto trattato negli ultimi tempi. Obiettivo strategico di questo piano è quello di dare un forte impulso all'innovazione sia tecnologica che organizzativa dell'industria italiana, grazie anche agli incentivi fiscali del super e iperammortamento.

Il candidato, relazionando per punti e, ove possibile, riportando le proprie esperienze o esempi concreti, ne declini i seguenti aspetti:

- Creerà opportunità professionali strutturali per gli ingegneri e se sì quali?
- Quali sono i settori dell'ingegneria maggiormente coinvolti e le competenze ritenute necessarie?
- I piani di studio attualmente proposti dal sistema universitario sono adeguati?
- Quali offerte formative si rendono utili e/o necessarie?
- Quale contributo specifico possono dare gli ingegneri?

ESAME DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI: INGEGNERE INDUSTRIALE I SESSIONE 2018 - 14 GIUGNO 2018

SEDE SVOLGIMENTO: POLITECNICO DI MILANO

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

PROVA SCRITTA (PROVA DI SETTORE)

TEMA N. 2

Il candidato illustri un esempio di sistema produttivo nel settore dell'ingegneria industriale e ne metta in evidenza gli aspetti relativi alle migliori tecnologie disponibili. In particolare si espongano considerazioni su:

- Efficienze e rendimenti
- Problematiche normative, tecniche, di qualità, di sicurezza
- Criticità e opportunità di sviluppo e innovazione

Il candidato risponda ai quesiti in forma di relazione tecnica articolata per punti, facendo riferimento, ove possibile, ad esempi concreti e quantitativi

I SESSIONE 2018 - 14 GIUGNO 2018 SEDE SVOLGIMENTO: **POLITECNICO DI MILANO**

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

SECONDA PROVA SCRITTA (PROVA DI CLASSE)

TEMA N. 1

Il candidato risponda ad uno dei due quesiti seguenti, in alternativa:

- si descrivano gli aspetti fondamentali del flusso attorno ad un profilo alare con particolare riferimento alle azioni aerodinamiche coinvolte. Si discutano sia i dispositivi adottati per migliorare le proprietà aerodinamiche a differenti condizioni operative, che i principali metodi analitici e approcci numerici in grado di descrivere tale flusso, dettagliando le caratteristiche aerodinamiche osservate, le ipotesi fisiche, la validità ed i limiti d'applicazione.
- Si discuta esaustivamente la progettazione dell'impianto propulsivo per applicazioni satellitari, illustrandone in modo critico le problematiche progettuali, i principali vincoli, le soluzioni adottabili per l'architettura dell'intero impianto e per i singoli equipaggiamenti costitutivi dell'impianto stesso; si evidenzino, inoltre, i criteri di dimensionamento in relazione ai differenti scenari applicativi; si presentino, da ultimo, i passi necessari ad effettuare il dimensionamento dell'intero impianto.

I SESSIONE 2018 - 14 GIUGNO 2018 SEDE SVOLGIMENTO: **POLITECNICO DI MILANO**

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

SECONDA PROVA SCRITTA (PROVA DI CLASSE)

TEMA N. 2

L'interazione uomo-macchina sta assumendo sempre maggiore importanza nel settore delle tecnologia applicate alla salute in molti campi quali ad esempio la diagnostica, la terapia, la riabilitazione etc. Il Candidato descriva almeno tre tipologie di interazione uomo-macchina (anche non in campi diversi) descrivendo i sistemi dal punto di vista tecnologico, dettagliando l'applicazione e discutendo anche quali siano state le più recenti innovazioni tecnologiche introdotte.

INGEGNERE INDUSTRIALE I SESSIONE 2018 - 14 GIUGNO 2018

SEDE SVOLGIMENTO: POLITECNICO DI MILANO

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

SECONDA PROVA SCRITTA

(PROVA DI CLASSE)

TEMA N. 3

Si consideri un sistema <u>non lineare</u> caratterizzato da un modello descritto dal sistema di equazioni differenziali come indicato, dove $\mathbf{x}(t)$ è il vettore delle variabili di stato.

$$\frac{d\mathbf{x}(t)}{dt} = f(\mathbf{x}(t), \mathbf{u}(t))$$

Il candidato descriva:

- 1. Come il sistema può essere controllato in anello chiuso e quali sono le problematiche che si possono incontrare.
- 2. Si discutano i concetti di stabilità e instabilità delle condizioni di equilibrio
- 3. Si discutano le problematiche di discretizzazione del sistema di controllo.

Si faccia eventualmente riferimento ad un caso particolare

INGEGNERE INDUSTRIALE

I SESSIONE 2018 - 14 GIUGNO 2018

SEDE SVOLGIMENTO: POLITECNICO DI MILANO

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

SECONDA PROVA SCRITTA

(PROVA DI CLASSE)

TEMA N. 4

Scelto un processo (reattivo) della chimica industriale moderna, il candidato ne illustri (nell'ordine ritenuto più opportuno):

- l'importanza industriale;
- le materie prime adottate e l'eventuale necessità di processi di purificazione degli stessi;
- gli aspetti termodinamici e cinetici;
- le condizioni operative;
- i reattori e gli eventuali catalizzatori impiegati;
- i prodotti ottenuti e l'eventuale necessità di separazioni e/o purificazione;
- lo schema di processo (ricorrendo a schemi di processo (PFD, process flow diagram));
- gli aspetti di salute, sicurezza e ambiente.
- gli aspetti di natura economica.

INGEGNERE INDUSTRIALE I SESSIONE 2018 - 14 GIUGNO 2018

SEDE SVOLGIMENTO: POLITECNICO DI MILANO

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

SECONDA PROVA SCRITTA

(PROVA DI CLASSE)

TEMA N. 5

Il candidato descriva, facendo riferimento ad una macchina elettrica a sua scelta (statica o rotante), le prove di caratterizzazione elettrica necessarie per l'identificazione dei parametri caratteristici.

INGEGNERE INDUSTRIALE

I SESSIONE 2018 - 14 GIUGNO 2018

SEDE SVOLGIMENTO: POLITECNICO DI MILANO

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

SECONDA PROVA SCRITTA (PROVA DI CLASSE)

TEMA N. 6

NELL'AMBITO DEL MONTAGGIO AUTOMATICO PER PRODUZIONI MULTI-PRODOTTO:

- SI ILLUSTRINO E DESCRIVANO ESEMPI REALI DI SIFFATTI SISTEMI DI MONTAGGIO AUTOMATICO MULTIPRODOTTO;
- 2. SI IDENTIFICHINO E DESCRIVANO LE PRINCIPALI IPOTESI DI RIFERIMENTO NECESSARIE PER LA DETERMINAZIONE DELLA CAPACITA' PRODUTTIVA DEI SISTEMI DI MONTAGGIO AUTOMATICO MULTIPRODOTTO;
- A SEGUITO DELL'IDENTIFICAZIONE DELLE IPOTESI DI RIFERMENTO (PUNTO 2.), SI ILLUSTRINO E DESCRIVANO I PRINCIPALI PASSI METODOLOGICI PER IL CALCOLO DELLA CAPACITA' PRODUTTIVA.

I SESSIONE 2018 - 14 GIUGNO 2018 SEDE SVOLGIMENTO: **POLITECNICO DI MILANO**

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

SECONDA PROVA SCRITTA (PROVA DI CLASSE)

TEMA N. 7

Con riferimento ad una utenza per un piccolo distretto produttivo che necessita sia di potenza elettrica che di potenza termica per riscaldamento, si illustri una possibile soluzione impiantistica che utilizzi una fonte energetica (a scelta del candidato).

Descrivere quindi il principio di funzionamento, i flussi energetici (anche con l'ausilio di diagrammi qualitativi), gli aspetti legati all'impatto ambientale ed alla sicurezza facendo riferimento alla normativa vigente.

I SESSIONE 2018 - 14 GIUGNO 2018 SEDE SVOLGIMENTO: **POLITECNICO DI MILANO**

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

SECONDA PROVA SCRITTA

(PROVA DI CLASSE)

TEMA N. 8

La sicurezza delle persone è un requisito imprescindibile di ogni macchina immessa nel mercato.

Il Candidato descriva quali ricadute ciò abbia sui processi di progettazione e di industrializzazione delle macchine, segnatamente nello spazio economico europeo (SEE).

I SESSIONE 2018 - 14 GIUGNO 2018 SEDE SVOLGIMENTO: **POLITECNICO DI MILANO**

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

SECONDA PROVA SCRITTA (PROVA DI CLASSE)

TEMA N. 9

I materiali ceramici presentano favorevoli proprietà, quali bassa densità ed elevata rigidità, che li rendono interessanti per molte applicazioni. Il candidato spieghi quali motivi limitano l'impiego dei materiali ceramici per la realizzazione di elementi strutturali e quali operazioni possono essere effettuate per contrastare tali limitazioni.

INGEGNERE INDUSTRIALE

I SESSIONE 2018 - 14 GIUGNO 2018

SEDE SVOLGIMENTO: POLITECNICO DI MILANO

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

SECONDA PROVA SCRITTA

(PROVA DI CLASSE)

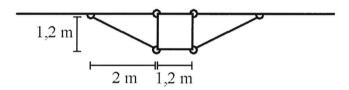
TEMA N. 10

Si chiede di definire da un punto di vista fisico il rumore, come è possibile misurarlo e i principali interventi di bonifica che possono ridurre l'esposizione.

INGEGNERE INDUSTRIALE

I SESSIONE 2018 - 10 SETTEMBRE 2018 SEDE SVOLGIMENTO: POLITECNICO DI MILANO

III COMMISSIONE - SETTORE INDUSTRIALE


SEZIONE A

PROVA PRATICA

TEMA N. 1

Il candidato risolva alternativamente uno dei seguenti temi:

• Si consideri un velivolo ad ala alta trapezoidale la cui struttura è schematizzabile come illustrato di seguito:

Si determinino le azioni interne sull'ala, assumendo per il velivolo i seguenti dati:

Peso	1800	kg
Superficie alare	18	m^2
Allungamento alare	7	
Rapporto di rastremazione	1,5	
Peso ala/peso velivolo	15-20%	
Fattore di contingenza	4,5	

• Si consideri un satellite in orbita polare alla quota di 200km. Si calcoli il costo delle manovre per portare il satellite in orbita circolare eliosincrona alla quota di 500km.

Si consideri una dissipazione interna dell'intero sistema di 95W. Si progetti il sistema di controllo termico, con modello mono-nodale, in modo da assicurare temperature in regime statico ammissibili per la componentistica di bordo. Si consideri il satellite su un'orbita mezzogiorno-mezzanotte e si assuma il satellite di forma sferica e raggio 1m.

Si assuma, quindi, l'impiego di una stazione di Terra equatoriale provvista di antenne da 3 metri in diametro: si valuti la durata del contatto tra stazione di Terra e satellite e si dimensioni il sottosistema di telecomunicazione di bordo assumendo un datarate di 1Mbps. Si valuti il volume di dati scaricabile in 1 settimana di volo.

I SESSIONE 2018 - 10 SETTEMBRE 2018 SEDE SVOLGIMENTO: **POLITECNICO DI MILANO**

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

PROVA PRATICA

TEMA N. 2

L'implantologia dentale consiste nell'inserimento nell'osso mascellare o mandibolare (privo del dente naturale) di protesi che, una volta integrata nell'osso stesso, potrà supportare un dente artificiale idoneo a svolgere la sua funzione.

PARTE 1

Il candidato descriva brevemente le specifiche di progetto (ad esempio, caratteristiche strutturali e meccaniche) per la realizzazione di un impianto dentale osteointegrato.

PARTE 2

Il candidato selezioni il materiale o i materiali con cui realizzare i componenti dell'impianto dentale, motivando la scelta.

- a. Dimensionare l'impianto, mediante un disegno quotato o uno schema.
- b. Indicare a quali tipi di carichi è soggetto l'impianto e quantificarli, considerando una situazione di masticazione normale.
- c. Calcolare lo stato di sforzo che agisce sulla testa della vite.
- d. Programmare una prova di resistenza meccanica a compressione uniassiale per verificare l'adeguatezza dell'impianto (specificando la procedura di prova, i parametri di prova in input e gli output ottenibili).
- e. Programmare altre prove meccaniche che si ritengano adeguate per una completa caratterizzazione dell'impianto.

PARTE 3

Rispetto al materiale selezionato per la costruzione dell'impianto dentale, individuare le possibili problematiche e i possibili miglioramenti per ottenere una buona osteointegrazione e una minima adesione batterica.

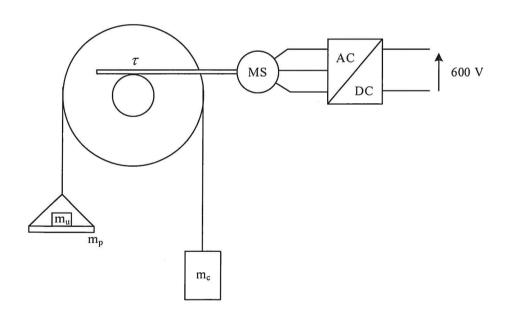
Indicare mediante quali prove di caratterizzazione si possono valutare i miglioramenti ottenuti.

PARTE 4

Indicare e commentare quali devono essere i passi da effettuare per il trasferimento tecnologico da scala di laboratorio a larga scala (cioè industriale) e per l'ottenimento del marchio CE.

INGEGNERE INDUSTRIALE

I SESSIONE 2018 - 10 SETTEMBRE 2018 SEDE SVOLGIMENTO: **POLITECNICO DI MILANO**


III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

PROVA PRATICA

TEMA N. 3

Un montacarichi presenta la struttura rappresentata in Figura, costituita da un **MOTORE ELETTRICO SINCRONO A MAGNETI PERMANENTI SINUSOIDALE** (AC Brushless) alimentato da un convertitore DC/AC che movimenta attraverso un sistema di riduzione (vite senza fine), una puleggia. Sulla puleggia si avvolge un cavo a cui è collegata la piattaforma di sollevamento di massa m_p ed un contrappeso di massa m_c.

I dati del sistema sono:

Convertitore AC/DC

Tensione nominale DC Bus:

 $V_{DC} = 600 \text{ V}$

Frequenza di commutazione:

 $f_{sw} = 10 \text{ kHz}.$

Motore AC Brushless

Tensione nominale:

 $V_n = 300 \text{ V}$

Potenza nominale:

 $P_n = 3 \text{ kW}$

Resistenza di statore (a 20°C):

 $R_s = 2.5 \Omega$

Induttanza statorica – (macchina isotropa): $L_s=8 \text{ mH}$. Velocità nominale: $\Omega_n=250 \text{ rad/s}$ Numero di poli : $n_p=8 \text{ poli}$. Inerzia rotorica: $J=0.032 \text{ kg m}^2$ Flusso dei magneti permanenti : $\phi_{pm}=0.171 \text{ Wb}$

Sistema meccanico

Massa piattaforma	$m_p = 250 \text{ kg}$
Massa utile di carico	$m_u = 450 \text{ kg}$
Massa contrappeso	$m_c = 400 \text{ kg}$
Rapporto di trasmissione vite/ruota	$\tau = 1/55$
Diametro puleggia	D = 0.55 m
Momento di inerzia puleggia	$J = 1 \text{ kg m}^2$
Rendimento della trasmissione	$\eta = 0.78$
Accelerazione massima consentita	$a = 0.6 \text{ m/s}^2$

Considerando che l'azionamento elettrico implementi un controllo vettoriale su assi rotorici della macchina elettrica e si disponga di un opportuno sensore di velocità il modello della macchina su assi di Park può essere scritto come indicato:

$$\begin{aligned} v_{sd} &= R_s i_{sd} + L_s \frac{d}{dt} i_{sd} - \theta_m^{\text{R}} L_s i_{sq} \\ v_{sq} &= R_s i_{sq} + L_s \frac{d}{dt} i_{sq} + \theta_m^{\text{R}} \psi_{pm} + \theta_m^{\text{R}} L_s i_{sd} \\ T &= n_p \psi_{pm} i_{sq} \end{aligned}$$

Dove:

 $v_{\text{sd,sq}}$ sono le componenti su assi di Park della tensione statorica $i_{\text{sd,sq}}$ sono le componenti su assi di Park della corrente statorica.

 θ_m^{kc} è la velocità meccanica rotorica in radianti elettrici

 $\psi_{{\scriptscriptstyle pm}}$ è il flusso dei magneti permanenti

 R_s la resistenza di statore

 L_s l'induttanza sincrona di statore

T la coppia

Il candidato risponda alle seguenti domande.

- 1. Si identifichi una possibile struttura di controllo della velocità del sistema utilizzando il modello introdotto per la parte elettrica del motore. Essendo la macchina a magneti permanenti non si consideri una possibile riduzione del flusso. Si rappresenti lo schema di controllo con un opportuno schema a blocchi.
- 2. Si progetti, eseguendo opportuni calcoli, un regolatore di coppia ad anello chiuso tale che:
 - a. Il sistema retroazionato sia asintoticamente stabile
 - b. Il sistema retroazionato abbia una banda passante opportuna
 - c. Il sistema di controllo sia in grado di annullare asintoticamente l'effetto di una variazione a gradino del disturbo.

Si consideri come punto di lavoro il punto di funzionamento nominale. Si evidenzino inoltre gli eventuali limiti imposti dalla presenza del convertitore statico DC/AC.

- 3. Si progetti, eseguendo opportuni calcoli, un regolatore di velocità ad anello chiuso, linearizzando il sistema nell'ipotesi che funzioni a pieno carico $(m_p + m_u)$ e sia alimentato a tensione nominale. Il regolatore deve garantire che:
 - a. Il sistema retroazionato sia asintoticamente stabile
 - b. Il sistema retroazionato abbia una banda passante opportuna
 - c. Il sistema di controllo sia in grado di annullare asintoticamente una variazione a gradino del disturbo
- 4. Considerando i regolatori progettati ai punti precedenti si proceda alla discretizzazione dei regolatori stesso scegliendo un opportuno tempo di campionamento e fornendo un possibile esempio di realizzazione. Si verifichi numericamente che il sistema di controllo abbia le prestazioni richieste e si discutano le eventuali problematiche legate alla realizzazione discreta.
- 5. Si consideri per il sistema in esame la possibilità di eliminare il sensore di velocità. Si discutano le problematiche di controllo sensorless della macchina elettrica e la possibilità di osservare/stimare la velocità meccanica. Si presenti un esempio di un possibile stimatore/osservatore per il caso in esame.

Per eventuali dati mancati o ipotesi semplificative si faccia riferimento alle regole di buona progettazione.

INGEGNERE INDUSTRIALE

I SESSIONE 2018 -10 SETTEMBRE 2018 SEDE SVOLGIMENTO: **POLITECNICO DI MILANO**

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

PROVA PRATICA

TEMA N. 4

Si deve progettare una unità di distillazione e rettifica al fine di anidrificare una miscela acquosa di acetone al 75% in massa di acetone. Si desidera ottenere in testa alla colonna una miscela al 99.75% massivo di acetone, limitando contestualmente le perdite di acetone in coda a 9 kg/h a fronte di una corrente da trattare disponibile in ragione di 55 t/giorno (funzionamento in continuo su 24 h).

Considerate le peculiarità dell'equilibrio liquido-vapore per il sistema in esame, si decide di operare a 0.3421 atm, con una pressione assoluta media di esercizio pari a 0.6579 atm. Nell'ipotesi di adottare un rapporto di riflusso in colonna superiore del 70% rispetto al rapporto di riflusso minimo e di alimentare la miscela al punto di bolla, il candidato svolga valutazioni e calcoli al fine di:

- a) stabilire e giustificare un opportuno schema termodinamico per la miscela in esame;
- b) calcolare portate, composizioni e temperature di progetto delle correnti uscenti dalla colonna;
- c) calcolare il rapporto di riflusso minimo;
- d) calcolare il numero di stadi teorici necessari per il rapporto di riflusso effettivo;
- e) calcolare le potenze termiche da scambiare al condensatore di testa (totale) e al ribollitore di coda.

Nelle valutazioni del contenuto entalpico delle fasi liquida e vapore si trascuri in prima approssimazione l'eventuale non idealità della miscela.

DATI CHIMICO-FISICI

	PM	Densità,	A	В	С	ΔH_{ev}
	kg/kmol	kg/m³				kJ/kg
CH ₃ COCH ₃	58	790	16.6513	2940.46	-35.93	523.35
						(a 44.6°C)
H ₂ O	18	998	18.3036	3816.44	-46.13	2151.55
						(a 100°C)

CONTRIBUTI DI GRUPPO PER IL CALCOLO DEI Cp DELL'ACETONE LIQUIDO (J/mol/K)

	T=248K	T=273K	T=298K	T=323K	T=348K	T=373K
-CH ₃ -	38.5	40.0	41.6	43.5	45.8	48.3
-CO-	41.8	42.7	43.5	44.4	45.2	46.0

CALCOLO DELLA TENSIONE DI VAPORE (P⁰ in mmHg e T in K)

$$lnP^0(T) = A - \frac{B}{T + C}$$

MODELLO DI WILSON

$$ln\gamma_1(T, P, \mathbf{x}) = 1 - LN(x_1 + \Lambda_{12}x_2) - \left(\frac{x_1}{x_1 + \Lambda_{12}x_2} + \frac{\Lambda_{21}x_2}{x_2 + \Lambda_{21}x_1}\right)$$

$$ln\gamma_2(T, P, \mathbf{x}) = 1 - LN(x_2 + \Lambda_{21}x_1) - \left(\frac{x_2}{x_2 + \Lambda_{21}x_1} + \frac{\Lambda_{12}x_2}{x_1 + \Lambda_{12}x_2}\right)$$

dove:

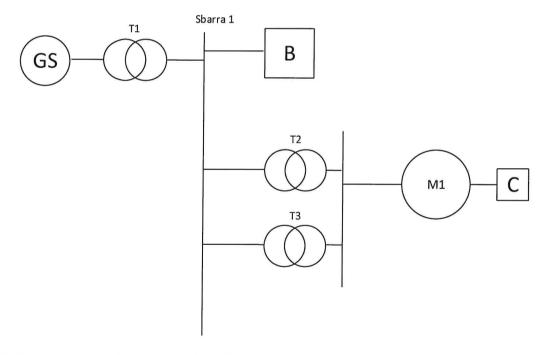
$$\varLambda_{i,j} = \frac{\widetilde{V_{i}^{L}}}{\widetilde{V_{i}^{L}}} exp\left(-\frac{\lambda_{ij} - \lambda_{ji}}{RT}\right)$$

con:

$$\begin{cases} \lambda_{12} - \lambda_{11} = 220.4088 \frac{kcal}{kmol} \\ \lambda_{21} - \lambda_{22} = 1488.6579 \frac{kcal}{kmol} \end{cases} con 1: acetone \ e \ 2: acqua \ (a \ 500 \ mmHg)$$

INGEGNERE INDUSTRIALE

I SESSIONE 2018 - 10 SETTEMBRE 2018 SEDE SVOLGIMENTO: POLITECNICO DI MILANO


III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

PROVA PRATICA

TEMA N. 5

Sia dato il sistema elettrico rappresentato in figura. La rete è alimentata dal generatore sincrono trifase GS collegato, attraverso il trasformatore trifase T1, alla sbarra 1. Il blocco B rappresenta un insieme di carichi trifase per un totale di potenza elettrica installata pari a Pb con fattore di potenza medio $\cos\phi_B$. Il motore asincrono trifase M1 è alimentato attraverso i due trasformatori trifase T2 e T3 connessi in parallelo. Tale motore è accoppiato in modo diretto ad un carico meccanico di cui è noto il legame tra coppia e velocità meccanica.

Nel seguito sono riportati i dati noti.

CARICO ELETTRICO TRIFASE B Pb = 85 kW $cos\phi_B = 0.8$

MOTORE ASICNRONO TRIFASE M1 Coppia nominale = 320 Nm Velocità nominale all'albero 2800 rpm Frequenza nominale 50 Hz Tensione nominale Vn = 380 V Velocità a vuoto all'albero 2998.5 rpm

Rendimento nominale $\eta_{Mln}=0.9$

Fattore di potenza nominale $\cos\phi_{M1n} = 0.8$

Numero di poli 2

Caratteristica del carico meccanico C_L(ω) con C_L [Nm], ω [rad/s]

 $C_L = 15 + 2.5 \cdot 10^{-3} \cdot \omega^2$

TRASFORMATORE T2

Potenza nominale An = 400 kVA

Tensione di corto circuito percentuale vcc%=6

Potenza di corto circuito percentuale pcc%=1.18%

Tensione nominale primaria V1n=22kV

Tensione nominale secondaria V2n=400 V

TRASFORMATORE T3

Potenza nominale An = 300 kVA

Tensione di corto circuito percentuale vcc%=6

Potenza di corto circuito percentuale pcc%=1.18%

Tensione nominale primaria V1n=22kV

Tensione nominale secondaria V2n=400 V

GENERATORE SINCRONO TRIFASE GS

Potenza nominale An = 350 kVA

Tensione nominale Vn = 10 kV

Numero coppie polari = 2

Frequenza nominale = 50 Hz

Reattanza sincrona percentuale xs% = 150%

Tensione a vuoto a corrente di eccitazione nominale Vo = 12 kV

Corrente di eccitazione nominale Ieccn = 60 A (si consideri una caratteristica di magnetizzazione lineare).

Trascurare gli attriti e la resistenza di statore.

Calcolare:

- La potenza meccanica nominale erogabile dal motore asincrono.
- La potenza erogata dal motore asincrono con il carico meccanico indicato (considerando lineare la caratteristica meccanica che lega la coppia alla velocità).
- La corrente assorbita dall'asincrono quando muove il carico meccanico indicato, considerando che il rendimento, il fattore di potenza e la tensione siano invariati rispetto ai valore nominali.
- Dimensionare la batteria di condensatori da installare per portare il fattore di potenza del motore asincrono al valore 0,95.
- Determinare la tensione di sbarra 1.
- Scegliere e determinare i dati tecnici del trasformatore T1, ipotizzando che il carco B assorba la potenza nominale
- Determinare la corrente erogata dal generatore sincrono e la corrente di eccitazione nell'ipotesi di caratteristica di magnetizzazione lineare.

Per lo svolgimento del tema, il candidato potrà aggiungere ai dati disponibili tutte le ipotesi ragionevoli che riterrà opportune, purché siano debitamente giustificate. Anche eventuali approssimazioni effettuate nei calcoli sono lecite, purché siano debitamente giustificate

I SESSIONE 2018 - JOSETTEMBRE 2018
SEDE SVOLGIMENTO: POLITECNICO DI MILANO

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

PROVA PRATICA

TEMA N. 6

LA MEDS S.P.A È UN'IMPRESA OPERANTE NEL SETTORE HEALTHCARE.

NEL DICEMBRE 2017 VIENE CONVOCATA UNA RIUNIONE TRA I DIRIGENTI DELLA

MEDS CON L'OBIETTIVO DI ANALIZZARE L'ANDAMENTO DELLA DOMANDA DI

MERCATO PER I SUCCESSIVI OTTO ANNI (2018-2025) DI TRE PRODOTTI: X, Y E Z.

IN PARTICOLARE, I RISULTATI DELLA RIUNIONE SONO RIPORTATI IN TABELLA 1.

ANNO	PRODOTTO X	PRODOTTO Y	PRODOTTO Z
2010	2.800	2.500	2.200
2018	UNITÀ/ANNO	UNITÀ/ANNO	UNITÀ/ANNO
2040	2.800	2.600	2.300
2019	UNITÀ/ANNO	UNITÀ/ANNO	UNITÀ/ANNO
2020	2.800	2.500	2.350
2020	UNITÀ/ANNO	UNITÀ/ANNO	UNITÀ/ANNO
-004	2.800	2.500	2.400
2021	UNITÀ/ANNO	UNITÀ/ANNO	UNITÀ/ANNO
2022	2.800	2.500	2.450
2022	UNITÀ/ANNO	UNITÀ/ANNO	UNITÀ/ANNO

2023	2.800	2.500	2.500
2023	UNITÀ/ANNO	UNITÀ/ANNO	UNITÀ/ANNO
2024	2.800	2.500	2.550
2024	UNITÀ/ANNO	UNITÀ/ANNO	UNITÀ/ANNO
2025	2.800	2.500	2.600
2025	UNITÀ/ANNO	UNITÀ/ANNO	UNITÀ/ANNO

TABELLA 1 – L'ANDAMENTO DELLA DOMANDA DI MERCATO DEI PRODOTTI DELLA
MEDS S.P.A

SI HANNO INOLTRE A DISPOSIZIONE ULTERIORI DATI RELATIVI AI TRE PRODOTTI:

- PREZZO DI VENDITA: 375 € PER IL PRODOTTO X, 490 € PER IL PRODOTTO Y E
 330 € PER IL PRODOTTO Z;
- COSTO MATERIALI DIRETTI (MD): 95 €/U PER IL PRODOTTO X, 145 €/U PER IL
 PRODOTTO Y E 105 €/U PER IL PRODOTTO Z;
- COSTO LAVORO DRETTO¹: 106 €/U PER IL PRODOTTO X, 104 €/U PER IL
 PRODOTTO Y, E 102 €/U PER IL PRODOTTO Z
- COSTO DELL'ENERGIA 27 €/U PER IL PRODOTTO X, 53 €/U PER IL PRODOTTO Y
 E 23 €/U PER IL PRODOTTO Z;

LA MEDS PUÒ PRODURRE ANNUALMENTE AL MASSIMO 2.300 UNITÀ DI X, 2.400 UNITÀ DI Y E 1.900 UNITÀ DI Z.

DOPO UN'ATTENTA ANALISI, SI EVIDENZIA COME AL FINE DI FRONTEGGIARE LA CRESCENTE COMPETIZIONE DI MERCATO SIA NECESSARIO EFFETTUARE UN INVESTIMENTO IN RICERCA E SVILUPPO (R&D) PER INCREMENTARE LA QUALITÀ

¹ La manodopera a disposizione dell'impresa è tale da soddisfare qualsiasi incremento della capacità produttiva. Inoltre, tale manodopera, se non completamente satura, non può essere spostata in un altro reparto né licenziata.

DEL PRODOTTO. IN PARTICOLARE, SI PREVEDE DI SODDISFARE IN QUESTO MODO ANCHE LE ESIGENZE RELATIVE ALLA PRODUZIONE, DATO CHE L'INVESTIMENTO IN RICERCA E SVILUPPO PORTEREBBE ALLA DISMISSIONE DI UNA DELLE FASI DI PRODUZIONE (RELATIVA AD UNA TRASFORMAZIONE DELLE MATERIE PRIME) E QUINDI ALLA SOSTITUZIONE DEL VECCHIO IMPIANTO (VALORE DI BILANCIO NEL 2017 PARI A 43.000 € E VITA UTILE RESIDUA PARI 4 ANNI²).

È INOLTRE NOTO CHE:

- L'INVESTIMENTO IN R&D (CHE COMPRENDE ANCHE L'ACQUISTO DI UN BREVETTO) CONSISTE IN 1.480.000 € (L'AZIENDA DECIDE DI PROCEDERE CON AMMORTAMENTO IN 7 ANNI A QUOTE COSTANTI A PARTIRE DAL 2019). LO STESSO BREVETTO VERREBBE VENDUTO IL A FINE MARZO DEL 2023 AD UN VALORE DI 170.000 €;
- NEL CASO DI INVESTIMENTO, IL VECCHIO IMPIANTO SAREBBE VENDUTO IL 30/04/2018 AD UN VALORE DI M,ERCATO PARI AL VALORE DI BILANCIO. NEL CASO DI NON INVESTIMENTO TALE IMPIANTO SAREBBE VENDUTO IL 31/12/2022 AD UN VALORE DI MERCATO PARI NUOVAMENTE AL SUO VALORE DI BILANCIO;
- L'INVESTIMENTO IN R & D (COMPRENSIVO DI BREVETTO), PERMETTEREBBE DI INCREMENTARE IL NUMERO DI UNITÀ REALIZZABILI DEL 15% PER IL PRODOTTO X, DEL 18% PER IL PRODOTTO Y E DEL 20% PER IL PRODOTTO Z;

 PERMETTEREBBE INOLTRE UNA RIDUZIONE DEL 9 % DEI COSTI UNITARI DEI MATERIALI DIRETTI DEI TRE PRODOTTI, A FRONTE DI MIGLIORAMENTI NELLA QUALITÀ;
- L'INTRODUZIONE DEL BREVETTO E LA MODIFICA DI UNA FASE PRODUTTIVA
 RICHIEDEREBBE UN CORSO DI FORMAZIONE CONTABILIZZATO COME COSTO DI

² Ammortamento residuo con il seguente profilo: 40% primo anno; 30% secondo anno; 20% terzo anno; 10% quarto anno.

- PERIODO. IL CORSO, PER UN IMPORTO DI 45.000 €, SAREBBE SOSTENUTO NEL MAGGIO 2018;
- IN CASO DI INVESTIMENTO I PREZZI DI VENDITA DEI TRE PRODOTTI SAREBBERO RIDOTTI DEL 3% PER X, DEL 4% PER Y E DEL 2% PER Z (SU TUTTE LE UNITÀ VENDUTE);
- AL TERMINE DEL 2025 IL PRODOTTO X VERREBBE COMUNQUE RITIRATI DAL MERCATO.

IL MANAGEMENT HA INOLTRE A DISPOSIZIONE LE SEGUENTI INFORMAZIONI DI NATURA FINANZIARIA:

- SUL TOTALE DEL CAPITALE INVESTITO, IL 45% PROVIENE DA UN
 FINANZIAMENTO REGIONALE IL CUI TASSO DI INTERESSE ANNUO PARI AL 20%;
- IL COSTO DEL CAPITALE PROPRIO AL LORDO DELLE IMPOSTE È PARI AL 15%
 MENTRE AL NETTO DELLE IMPOSTE È PARI AL 10%;
- LA PRESSIONE FISCALE È DEL 46%;
- SI PREVEDE CHE, MANTENENDO LA GESTIONE ATTUALE, I REDDITI ANTE IMPOSTE SARANNO AMPIAMENTE POSITIVI PER I PROSSIMI ANNI.

DOMANDA 1

POSIZIONANDOSI A DICEMBRE 2017, VALUTARE L'OPPORTUNITÀ DI INTRODURRE L'INVESTIMENTO, ATTRAVERSO IL CRITERIO DEL VALORE ATTUALE NETTO O NET PRESENT VALUE (NPV), ADOTTANDO LA LOGICA DEL CAPITALE INVESTITO AL NETTO DELLE IMPOSTE.

DOMANDA 2

POSIZIONANDOSI A DICEMBRE 2017, VALUTARE L'OPPORTUNITÀ DI INTRODURRE L'INVESTIMENTO, ATTRAVERSO IL CRITERIO DELL'INDICE DI PROFITTABILITÀ O PROFITABILITY INDEX (PI), ADOTTANDO LA LOGICA DEL CAPITALE INVESTITO AL NETTO DELLE IMPOSTE.

DOMANDA 3

POSIZIONANDOSI A DICEMBRE 2017, VALUTARE L'OPPORTUNITÀ DI INTRODURRE L'INVESTIMENTO, ATTRAVERSO IL CRITERIO DEL TASSO INTERNO DI RITORNO O INTERNAL RATE OF RETURN (IRR), ADOTTANDO LA LOGICA DEL CAPITALE INVESTITO AL NETTO DELLE IMPOSTE.

DOMANDA 4

POSIZIONANDOSI A DICEMBRE 2017, VALUTARE L'OPPORTUNITÀ DI INTRODURRE L'INVESTIMENTO, ATTRAVERSO IL CRITERIO DEL TEMPO DI RIPAGAMENTO ATTUALIZZATO O PAYBACK TIME (PBT) ATTUALIZZATO, ADOTTANDO LA LOGICA DEL CAPITALE INVESTITO AL NETTO DELLE IMPOSTE.

DOMANDA 5

CONFRONTARE E DISCUTERE I RISULTATI OTTENUTI ATTRAVERSO

L'APPLICAZIONE DEI CRITERI PRECEDENTI, COMMENTANDO E MOTIVANDO

OPPORTUNAMENTE L'INSORGERE DI VALUTAZIONI CONCORDANTI O
DISCORDANTI A FRONTE DELL'UTILIZZO DEI DIVERSI MODELLI (ALLA LUCE
DEI LORO OBIETTIVI E CARATTERISTICHE).

NOTA BENE: IL/LA CANDIDATO/A E' CHIAMATO/A A FORMULARE (E GIUSTIFICARE)

OPPORTUNE IPOTESI QUALORA ALCUNI DATI O INFORMAZIONI POTENZIALMENTE

UTILI RISULTASSERO MANCANTI E/O APPARENTEMENTE INCOERENTI NEL TESTO DI

CUI SOPRA. LA CAPACITA' DEL/LA CANDIDATO/A DI RISOLVERE PROBLEMI COMPLESSI

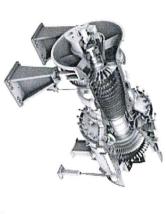
IN PRESENZA DI DATI E INFORMAZIONI MANCANTI E/O INCOERENTI ATTRAVERSO LA

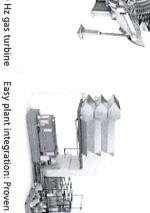
FORMULAZIONE E L'UTILIZZO DI OPPORTUNE IPOTESI E' ESSA STESSA OGGETTO DI

VALUTAZIONE.

I SESSIONE 2018 - 10 SETTEMBRE 2018
SEDE SVOLGIMENTO: POLITECNICO DI MILANO

III COMMISSIONE - SETTORE INDUSTRIALE


SEZIONE A


PROVA PRATICA

TEMA N. 7

Con riferimento alle specifiche della turbina a gas riportate nell'allegato, è richiesto il calcolo di un ciclo a vapore *bottoming* per un assetto in ciclo combinato.

Fissate ragionevolmente le perdite di carico al generatore di vapore a recupero (*HRSG*), il candidato dovrà determinare la potenza erogata dalla turbina a gas, considerando la contropressione allo scarico. Quindi dovrà posizionare sul piano T-s (oppure h-s) i punti del ciclo a vapore caratteristici di una soluzione con due livelli di pressione (con o senza *reheat*, a scelta del candidato), definite le pressioni relative ai due livelli ed al condensatore, la temperatura massima del vapore in ammissione alla turbina di testa e quanto ancora necessario per il calcolo delle portate di vapore generate nell'HRSG. È richiesta quindi la potenza netta del ciclo *bottoming* e dell'intero ciclo combinato (rendimenti di pompa e turbina a vapore stimati in accordo con lo stato dell'arte).

with an outstanding reliability and availability The SGT5-4000F is a well-proven 50 Hz gas turbine

Fuel

40.0% 50 Hz

3,000 rpm

18.8:1

9,001 kJ/kWh (8,532 Btu/kWh)

Power output

307 MW

(dual fuel option); other fuels on request Natural gas, LNG, ethane, propane, distillate oil

> cycle power plant Siemens combined

> > SCC5-4000F

SCC5-4000F 2×1 890 MW

Net plant power output

445 MW 58.7%

Easy plant integration: Proven package cycle operation; fast project execution concepts for early power generation in simple

multi For co

Wana
1

-shaft (2×1) arrangements	-4000F is offered in single-shaft or	ombined cycle applications, the
------------------------------------	--------------------------------------	---------------------------------

Net plant efficiency	58.7%	58.7%
Net heat rate	6,133 kJ/kWh (5,812 Btu/kWh)	6,133 kJ/kWh (5,812 Btu/kWh)
Number of gas turbines		2
Pressure/reheat	Triple/Yes	Triple/Yes
Physical dimensions		
Approx. weight	312,000 kg (688,000 lb)	
Length	10.8 m (35 ft)	
Width	5.2 m (17 ft)	
Heiaht	4.8 m (16 ft)	

Exhaust temperature NO_x emissions

> 579°C (1,074°F) 723 kg/s (1,595 lb/s)

(without water injection for NO_x control), <42 ppmvd at 15% O_2 on fuel oil <25 ppmvd at 15% O₂ on fuel gas

(with water injection for NO_x control), <58 ppmvd at 15% O_2 on fuel oil

(without water injection for NO_x control)

Exhaust mass flow Pressure ratio Turbine speed Heat rate **Gross efficiency** Frequency

15

		L	V	L	V	L	V	L	V
T	Р	ρ	ρ	v	V	h	h	s	s
[°C]	[MPa]	[kg/m^3]	[kg/m^3]	[m^3/kg]	[m^3/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
5	0.0009	1000	0.007	1.000E-03	1.470E+02	21	2510	0.076	9.025
15	0.0017	999	0.013	1.001E-03	7.788E+01	63	2528	0.224	8.780
25	0.0032	997	0.023	1.003E-03	4.334E+01	105	2547	0.367	8.557
35	0.0056	994	0.040	1.006E-03	2.521E+01	147	2565	0.505	8.352
45	0.0096	990	0.066	1.010E-03	1.525E+01	188	2582	0.639	8.163
55	0.0158	986	0.105	1.015E-03	9.564E+00	230	2600	0.768	7.990
65	0.0250	981	0.161	1.020E-03	6.194E+00	272	2618	0.894	7.830
75	0.0386	975	0.242	1.026E-03	4.129E+00	314	2635	1.016	7.681
85	0.0579	969	0.354	1.032E-03	2.826E+00	356	2651	1.135	7.543
95	0.0846	962	0.505	1.040E-03	1.981E+00	398	2668	1.250	7.415
105	0.1209	955	0.705	1.047E-03	1.418E+00	440	2683	1.363	7.295
115	0.1692	947	0.965	1.056E-03	1.036E+00	483	2699	1.474	7.183
125	0.2322	939	1.299	1.065E-03	7.700E-01	525	2713	1.582	7.077
135	0.3132	931	1.719	1.075E-03	5.817E-01	568	2727	1.687	6.977
145	0.4157	922	2.242	1.085E-03	4.460E-01	611	2740	1.791	6.883
155	0.5435	912	2.886	1.096E-03	3.465E-01	654	2752	1.892	6.793
165	0.7009	903	3.671	1.108E-03	2.724E-01	697	2763	1.992	6.707
175	0.8926	892	4.617	1.121E-03	2.166E-01	741	2773	2.091	6.624
185	1.1235	882	5.750	1.134E-03	1.739E-01	785	2781	2.188	6.545
195	1.3988	870	7.098	1.149E-03	1.409E-01	830	2789	2.283	6.468
205	1.7243	859	8.690	1.165E-03	1.151E-01	875	2795	2.378	6.393
215	2.1058	847	10.562	1.181E-03	9.468E-02	921	2799	2.471	6.320
225	2.5497	834	12.755	1.199E-03	7.840E-02	967	2802	2.564	6.248
235	3.0625	820	15.314	1.219E-03	6.530E-02	1014	2803	2.656	6.178
245	3.6512	806	18.297	1.240E-03	5.465E-02	1062	2802	2.748	6.107
255	4.3229	791	21.768	1.264E-03	4.594E-02	1110	2799	2.839	6.037
265	5.0853	776	25.809	1.289E-03	3.875E-02	1160	2794	2.931	5.966
275	5.9464	759	30.520	1.318E-03	3.277E-02	1211	2785	3.022	5.894
285	6.9147	741	36.028	1.349E-03	2.776E-02	1263	2774	3.115	5.821
295	7.9991	722	42.501	1.385E-03	2.353E-02	1317	2759	3.208	5.745
305	9.2094	702	50.167	1.425E-03	1.993E-02	1373	2739	3.303	5.666
AND VALUE OF	10.5560	679	59.344	1.472E-03	1.685E-02	1432	2715	3.400	5.582
	12.0510	654	70.506	1.528E-03	1.418E-02	1494	2684	3.500	5.491
	13.7070	626	84.407	1.597E-03	1.185E-02	1560	2645	3.605	5.391
	15.5410	594	102.360	1.685E-03	9.769E-03	1632	2595	3.718	5.276
355	17.5700	553	127.090	1.808E-03	7.868E-03	1714	2527	3.844	5.138
	19.8210	496	166.350		6.012E-03	1818	2423	4.001	4.950
	21.9460	381	263.600		3.794E-03	1996	2195	4.270	4.579

- T temperatura
- p pressione
- ρ massa volumica
- v volume specifico alla massa
- h entalpia specifica alla massa
- s entropia specifica alla massa
- L liquido
- V vapore

		L	V	L	V	L	V	L	V
T	Р	ρ	ρ	٧	V	h	h	s	s
[°C]	[MPa]	[kg/m^3]	[kg/m^3]	[m^3/kg]	[m^3/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
7.0	0.0010	1000	0.008	NOON DISCUSSION OF THE CONTROL	1.292E+02	29	2514	0.106	8.975
24.1	0.0030	997	0.022	Herritan State Committee C	4.565E+01	101	2545	0.354	8.576
32.9	0.0050	995	0.035		2.819E+01	138	2561	0.476	8.394
39.0	0.0070	993	0.049		2.052E+01	163	2572	0.559	8.275
43.8	0.0090	991	0.062	1.009E-03	1.620E+01	183	2580	0.622	8.186
45.8	0.0100	990	0.068	1.010E-03	1.467E+01	192	2584	0.649	8.149
69.1	0.0300	978	0.191		5.228E+00	289	2625	0.944	7.768
81.3	0.0500	971	0.309	The second second second second	3.240E+00	341	2645	1.091	7.593
89.9	0.0700	965	0.423		2.365E+00	377	2659	1.192	7.479
96.7	0.0900	961	0.535	1.041E-03	1.869E+00	405	2670	1.270	7.394
99.6	0.1000	959	0.590	1.043E-03	1.694E+00	418	2675	1.303	7.359
133.5	0.3000	932	1.651	1.073E-03	6.058E-01	561	2725	1.672	6.992
151.8	0.5000	915	2.668	1.093E-03	3.748E-01	640	2748	1.860	6.821
165.0	0.7000	903	3.666	1.108E-03	2.728E-01	697	2763	1.992	6.707
175.4	0.9000	892	4.654	1.121E-03	2.149E-01	743	2773	2.094	6.621
179.9	1.0000	887	5.145	1.127E-03	1.944E-01	763	2777	2.138	6.585
212.4	2.0000	850	10.042	1.177E-03	9.959E-02	909	2798	2.447	6.339
233.9	3.0000	822	15.001	1.217E-03	6.666E-02	1008	2803	2.646	6.186
250.4	4.0000	798	20.090	1.253E-03	4.978E-02	1088	2801	2.797	6.070
263.9	5.0000	777	25.351	1.286E-03	3.945E-02	1155	2794	2.921	5.974
275.6	6.0000	758	30.818	1.319E-03	3.245E-02	1214	2785	3.028	5.890
285.8	7.0000	740	36.525	1.352E-03	2.738E-02	1268	2773	3.122	5.815
295.0	8.0000	722	42.507	1.385E-03	2.353E-02	1317	2759	3.208	5.745
303.3	9.0000	705	48.804	1.418E-03	2.049E-02	1364	2743	3.287	5.679
311.0	10.0000	688	55.463	1.453E-03	1.803E-02	1408	2726	3.361	5.616
318.1	11.0000	672	62.541	1.489E-03	1.599E-02	1450	2706	3.430	5.555
	12.0000	655	70.106	1.526E-03	1.426E-02	1492	2685	3.497	5.494
	13.0000	638	78.245	1.567E-03	1.278E-02	1532	2663	3.561	5.434
336.7	14.0000	621	87.069	1.610E-03	1.149E-02	1571	2638	3.623	5.373
342.2	15.0000	604	96.727	1.657E-03	1.034E-02	1610	2611	3.685	5.311
	16.0000	585		1.709E-03	9.309E-03	1650	2581	3.746	5.246
	17.0000	565			8.371E-03		2548	3.808	5.179
	18.0000	544	a coasen areasen	1.840E-03	7.502E-03	1732	2510	3.872	5.106
	19.0000	519		1.927E-03	6.677E-03	1777	2466	3.940	5.026
365.8	20.0000	490	170.500	2.040E-03	5.865E-03	1827	2412	4.016	4.931
369.8	21.0000	453	200.160	2.206E-03	4.996E-03	1888	2339	4.106	4.808
373.7	22.0000	370	274.160	2.704E-03	3.648E-03	2011	2173	4.295	4.545

- Т temperatura
- pressione р
- massa volumica
- volume specifico alla massa
- h
- entalpia specifica alla massa entropia specifica alla massa s
- liquido L
- V vapore

Tabelle termodinamiche: vapore d'acqua surriscaldato

p [Mpa]		0.005			0.010			0.020	
T	ρ	h	S	ρ	h	s	ρ	h	s
[°C]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]
50	0.034	2593	8.498	0.067	2592	8.174			
75	0.031	2641	8.639	0.062	2640	8.317	0.125	2638	7.993
100	0.029	2688	8.770	0.058	2688	8.449	0.116	2686	8.126
125	0.027	2736	8.893	0.054	2735	8.573	0.109	2734	8.251
150	0.026	2783	9.010	0.051	2783	8.689	0.103	2782	8.368
175	0.024	2832	9.120	0.048	2831	8.800	0.097	2831	8.479
200	0.023	2880	9.225	0.046	2880	8.905	0.092	2879	8.584
225	0.022	2929	9.326	0.044	2928	9.005	0.087	2928	8.685
250	0.021	2978	9.422	0.041	2977	9.102	0.083	2977	8.781
275	0.020	3027	9.514	0.040	3027	9.194	0.079	3027	8.874
300	0.019	3077	9.603	0.038	3077	9.283	0.076	3077	8.963
325	0.018	3127	9.689	0.036	3127	9.368	0.072	3127	9.048
350	0.017	3178	9.771	0.035	3178	9.451	0.070	3177	9.131
375	0.017	3229	9.852	0.033	3229	9.532	0.067	3228	9.212
400	0.016	3280	9.929	0.032	3280	9.609	0.064	3280	9.289
425	0.016	3332	10.005	0.031	3332	9.685	0.062	3332	9.365
450	0.015	3384	10.078	0.030	3384	9.758	0.060	3384	9.438
475	0.014	3437	10.150	0.029	3437	9.830	0.058	3437	9.510
500	0.014	3490	10.220	0.028	3490	9.900	0.056	3490	9.580
525	0.014	3543	10.288	0.027	3543	9.968	0.054	3543	9.648
550	0.013	3597	10.354	0.026	3597	10.034	0.053	3597	9.714
575	0.013	3652	10.419	0.026	3652	10.099	0.051	3651	9.780
600	0.012	3706	10.483	0.025	3706	10.163	0.050	3706	9.843

p [Mpa]	0.050				0.100			0.200		
T	ρ	h	S	ρ	h	S	ρ	h	s	
[°C]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]	
100	0.293	2682	7.695	0.590	2676	7.361				
125	0.274	2732	7.823	0.550	2727	7.493	1.114	2717	7.153	
150	0.257	2780	7.941	0.516	2777	7.615	1.042	2769	7.281	
175	0.243	2829	8.053	0.487	2826	7.728	0.980	2820	7.398	
200	0.230	2878	8.159	0.460	2876	7.836	0.926	2871	7.508	
225	0.218	2927	8.260	0.437	2925	7.937	0.877	2921	7.612	
250	0.207	2976	8.357	0.416	2975	8.035	0.834	2971	7.710	
275	0.198	3026	8.450	0.396	3024	8.128	0.795	3022	7.804	
300	0.189	3076	8.539	0.379	3075	8.217	0.760	3072	7.894	
325	0.181	3126	8.625	0.363	3125	8.303	0.727	3123	7.981	
350	0.174	3177	8.708	0.348	3176	8.387	0.698	3174	8.064	
375	0.167	3228	8.788	0.335	3227	8.467	0.671	3225	8.145	
400	0.161	3279	8.866	0.322	3279	8.545	0.645	3277	8.224	
425	0.155	3331	8.942	0.311	3331	8.621	0.622	3329	8.300	
450	0.150	3384	9.015	0.300	3383	8.695	0.600	3382	8.373	
475	0.145	3436	9.087	0.290	3436	8.766	0.580	3434	8.445	
500	0.140	3489	9.157	0.280	3489	8.836	0.561	3488	8.515	
525	0.136	3543	9.225	0.272	3542	8.904	0.544	3541	8.584	
550	0.132	3597	9.291	0.263	3596	8.971	0.527	3595	8.650	
575	0.128	3651	9.356	0.256	3651	9.036	0.511	3650	8.715	
600	0.124	3706	9.420	0.248	3706	9.100	0.497	3705	8.779	

temperatura Τ

pressione р

massa volumica

ρ h entalpia specifica alla massa

entropia specifica alla massa s

Tabelle termodinamiche: vapore d'acqua surriscaldato

p [Mpa]	0.5			1.0				2.0		
T	ρ	h	S		ρ	h	S	ρ	h	S
[°C]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]		[kg/m^3]	[kJ/kg]	[kJ/kg-K]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]
175	2.503	2801	6.943							
200	2.353	2856	7.061		4.854	2828	6.696			
225	2.223	2909	7.170		4.553	2887	6.817	9.633	2836	6.416
250	2.108	2961	7.272		4.297	2943	6.927	8.969	2903	6.548
275	2.006	3013	7.369		4.074	2998	7.029	8.427	2965	6.663
300	1.914	3065	7.461		3.876	3052	7.125	7.968	3024	6.768
325	1.830	3116	7.550		3.699	3105	7.216	7.568	3082	6.866
350	1.754	3168	7.635		3.540	3158	7.303	7.215	3138	6.958
375	1.684	3220	7.716		3.395	3211	7.386	6.899	3193	7.046
400	1.620	3272	7.796		3.262	3265	7.467	6.613	3248	7.129
425	1.561	3325	7.872		3.139	3318	7.545	6.353	3303	7.209
450	1.506	3378	7.947		3.026	3371	7.620	6.115	3358	7.287
475	1.454	3431	8.019	-	2.921	3425	7.693	5.895	3413	7.361
500	1.407	3485	8.089	1	2.824	3479	7.764	5.692	3468	7.434
525	1.362	3538	8.158		2.733	3534	7.833	5.504	3524	7.504
550	1.320	3593	8.225	١	2.648	3588	7.901	5.328	3579	7.573
575	1.281	3647	8.290		2.568	3643	7.967	5.164	3635	7.639
600	1.244	3703	8.354		2.493	3699	8.031	5.010	3691	7.704
				Ť						

p [Mpa]		5.0			10.0				20.0	
Т	ρ	h	S	ρ	h	S	Ι	ρ	h	S
[°C]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]	1	[kg/m^3]	[kJ/kg]	[kJ/kg-K]
275	24.132	2840	6.057			1	Г			
300	22.053	2926	6.211							
325	20.495	3001	6.339	50.308	2810	5.760				
350	19.242	3069	6.452	44.564	2924	5.946				
375	18.193	3134	6.554	40.719	3016	6.091		130.270	2603	5.228
400	17.290	3197	6.648	37.827	3097	6.214		100.500	2817	5.553
425	16.497	3258	6.737	35.509	3172	6.323		87.129	2953	5.751
450	15.792	3317	6.821	33.578	3242	6.422		78.609	3062	5.904
475	15.157	3376	6.901	31.923	3310	6.514		72.423	3156	6.032
500	14.581	3435	6.978	30.478	3375	6.600		67.598	3241	6.145
525	14.054	3493	7.052	29.196	3439	6.681		63.661	3321	6.246
550	13.570	3551	7.124	28.047	3502	6.759		60.346	3396	6.339
575	13.122	3609	7.193	27.006	3564	6.833		57.492	3469	6.426
600	12.706	3667	7.261	26.057	3626	6.905	L	54.991	3539	6.508

 T temperatura

pressione р

ρ h massa volumica

entalpia specifica alla massa

entropia specifica alla massa s

Tabelle termodinamiche: vapore d'acqua surriscaldato

	T [°C]		50	
	1 [C]		50	
	р	ρ	h	S
	[Mpa]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]
	0.002	0.013	2594	8.923
	0.004	0.027	2594	8.601
	0.006	0.040	2593	8.413
	0.008	0.054	2593	8.279
	0.01	0.067	2592	8.174
	0.02			
	0.04			
	0.06			
	0.08			
	0.1			
	0.2			
١	0.4			

100	
h	S
[kJ/kg]	[kJ/kg-K]
2688	9.194
2688	8.873
2688	8.686
2688	8.552
2688	8.449
2686	8.126
2684	7.801
2681	7.608
2679	7.470
2676	7.361
	h [kJ/kg] 2688 2688 2688 2688 2688 2686 2684 2681 2679

	150	
ρ	h	S
[kg/m^3]	[kJ/kg]	[kJ/kg-K]
0.010	2784	9.433
0.020	2784	9.113
0.031	2783	8.926
0.041	2783	8.793
0.051	2783	8.689
0.103	2782	8.368
0.206	2781	8.046
0.309	2780	7.856
0.412	2778	7.720
0.516	2777	7.615
1.042	2769	7.281
2.124	2753	6.931

_		-	A MARK WHAT A PARK WE WANTED
T [°C]		200	
р	ρ	h	S
[Mpa]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]
0.002	0.009	2880	9.648
0.004	0.018	2880	9.328
0.006	0.027	2880	9.141
0.008	0.037	2880	9.008
0.01	0.046	2880	8.905
0.02	0.092	2879	8.584
0.04	0.184	2878	8.263
0.06	0.276	2877	8.074
0.08	0.368	2876	7.940
0.1	0.460	2876	7.836
0.2	0.926	2871	7.508
0.4	1.872	2861	7.172
0.6	2.840	2851	6.968
0.8	3.833	2840	6.818
1	4.854	2828	6.696
2			
4			
6			
8			

h	S
[kJ/kg]	[kJ/kg-K]
2978	9.845
2978	9.525
2978	9.337
2978	9.205
2977	9.102
2977	8.781
2977	8.460
2976	8.272
2975	8.139
2975	8.035
2971	7.710
2965	7.380
2958	7.183
2950	7.040
2943	6.927
2903	6.548
	[kJ/kg] 2978 2978 2978 2977 2977 2977 2976 2975 2975 2971 2965 2958 2950 2943

	300	
ρ	h	S
[kg/m^3]	[kJ/kg]	[kJ/kg-K]
0.008	3077	10.026
0.015	3077	9.706
0.023	3077	9.519
0.030	3077	9.386
0.038	3077	9.283
0.076	3077	8.963
0.151	3076	8.642
0.227	3076	8.454
0.303	3075	8.321
0.379	3075	8.217
0.760	3072	7.894
1.527	3067	7.568
2.302	3062	7.374
3.085	3057	7.235
3.876	3052	7.125
7.97	3024	6.768
16.99	2962	6.364
27.63	2886	6.070
41.19	2787	5.794

T temperatura

p pressione

 $\rho \qquad \text{massa volumica}$

h entalpia specifica alla massa

s entropia specifica alla massa

T [°C]		350			400			450	
р	ρ	h	S	ρ	h	S	ρ	h	S
[Mpa		[kJ/kg]	[kJ/kg-K]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]
0.00			10.194	0.006	3280	10.352	0.006	3384	10.501
0.00		3178	9.874	0.013	3280	10.032	0.012	3384	10.181
0.00	THE RESIDENCE INC.	3178	9.687	0.019	3280	9.845	0.018	3384	9.994
0.00	1000		9.554	0.026	3280	9.712	0.024	3384	9.861
0.0	1 0.035	3178	9.451	0.032	3280	9.609	0.030	3384	9.758
0.0		3177	9.131	0.064	3280	9.289	0.060	3384	9.438
0.0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	3177	8.811	0.129	3280	8.969	0.120	3384	9.118
0.0		3177	8.623	0.193	3279	8.782	0.180	3383	8.931
0.0		3176	8.490	0.258	3279	8.649	0.240	3383	8.798
0	1 0.348	3176	8.387	0.322	3279	8.545	0.300	3383	8.695
0.	2 0.698	3174	8.064	0.645	3277	8.224	0.600	3382	8.373
0.	4 1.401	3170	7.740	1.294	3274	7.900	1.203	3379	8.051
0.	6 2.109	3166	7.548	1.947	3271	7.710	1.809	3377	7.861
0.	8 2.822	3162	7.411	2.602	3268	7.573	2.416	3374	7.726
	1 3.540	3158	7.303	3.262	3265	7.467	3.026	3371	7.620
	2 7.22	3138	6.958	6.61	3248	7.129	6.11	3358	7.287
	4 15.04	3093	6.584	13.62	3215	6.771	12.49	3331	6.939
	6 23.67	3044	6.336	21.09	3178	6.543	19.17	3303	6.722
	8 33.36	2988	6.132	29.12	3139	6.366	26.18	3273	6.558
1	0 44.56	2924	5.946	37.83	3097	6.214	33.58	3242	6.422
	0			100.5	2817	5.553	78.6	3062	5.904
4				523.3	1931	4.115	270.9	2512	4.945
	0			612.4	1843	3.932	479.5	2180	4.414
	0			659.5	1809	3.834	563.7	2088	4.234
10	0			692.9	1791	3.764	614.2	2045	4.127

T [°C]		500			550			600	
р	ρ	h	S	ρ	h	S	ρ	h	s
[Mpa]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]	[kg/m^3]	[kJ/kg]	[kJ/kg-K]
0.002	0.006	3490	10.643	0.005	3597	10.777	0.005	3706	10.906
0.004	0.011	3490	10.323	0.011	3597	10.457	0.010	3706	10.586
0.006	0.017	3490	10.136	0.016	3597	10.270	0.015	3706	10.399
0.008	0.022	3490	10.003	0.021	3597	10.137	0.020	3706	10.266
0.01	0.028	3490	9.900	0.026	3597	10.034	0.025	3706	10.163
0.02	0.056	3490	9.580	0.053	3597	9.714	0.050	3706	9.843
0.04	0.112	3489	9.260	0.105	3597	9.394	0.099	3706	9.523
0.06	0.168	3489	9.072	0.158	3597	9.207	0.149	3706	9.336
0.08	0.224	3489	8.939	0.211	3597	9.074	0.199	3706	9.203
0.1	0.280	3489	8.836	0.263	3596	8.971	0.248	3706	9.100
0.2	0.561	3488	8.515	0.527	3595	8.650	0.497	3705	8.779
0.4	1.124	3486	8.193	1.055	3594	8.329	0.994	3703	8.458
0.6	1.689	3483	8.004	1.585	3592	8.140	1.493	3702	8.270
0.8	2.256	3481	7.869	2.116	3590	8.005	1.993	3700	8.135
1	2.824	3479	7.764	2.648	3588	7.901	2.493	3699	8.031
2	5.69	3468	7.434	5.33	3579	7.573	5.01	3691	7.704
4	11.57	3446	7.092	10.79	3560	7.236	10.12	3675	7.371
6	17.65	3423	6.883	16.39	3541	7.031	15.32	3659	7.169
8	23.94	3400	6.727	22.14	3522	6.880	20.63	3642	7.022
10	30.48	3375	6.600	28.05	3502	6.759	26.06	3626	6.905
20	67.6	3241	6.145	60.3	3396	6.339	55.0	3539	6.508
40	177.8	2907	5.474	143.2	3154	5.786	123.6	3350	6.017
60	338.7	2570	4.936	252.8	2902	5.352	206.9	3157	5.653
80	457.0	2397	4.647	362.3	2710	5.039	295.5	2988	5.367
100	528.3	2316	4.490	444.6	2596	4.841	374.2	2865	5.158

INGEGNERE INDUSTRIALE

I SESSIONE 2018 - 10 SETTEMBRE 2018

SEDE SVOLGIMENTO: POLITECNICO DI MILANO

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

PROVA PRATICA

TEMA N. 8

Il figura 1 è riportato un asse lineare in grado di traslare una tavola portapezzo. Il sistema è realizzato tramite una vite a ricircolo di sfere opportunamente collegata ad un motore elettrico tramite una trasmissione meccanica. La tavola percorre il movimento di andata in un tempo pari a 2/3 del tempo complessivo (Tc), mentre ritorna nella posizione iniziale nel rimanente 1/3Tc. Nella fase di andata si consideri una forza Fr applicata sul pezzo trasportato, causata dalle operazioni associate alla lavorazione del pezzo stesso.

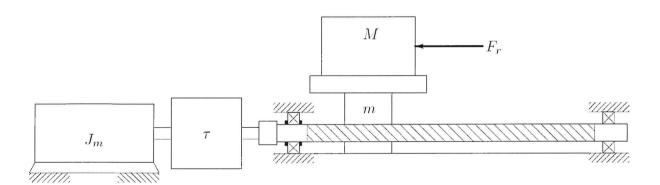


Figura 1 – Schema del sistema

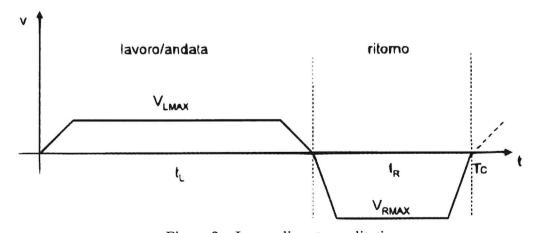


Figura 2 – Legge di moto qualitativa

Le specifiche di progetto sono le seguenti:

- Corsa 2.5m
- Masse traslanti M+m = 125kg
- Forza resistente applicata sul pezzo nelle condizioni di lavoro Fr = 10 kN
- Accelerazione massima in fase di lavoro 0.25 m/s2
- Accelerazione massima in fase di ritorno 0.75 m/s2
- Velocità massima in fase di lavoro 3 m/min
- Velocità massima in fase di ritorno 20 m/min

Si richiede di:

- Definire la legge di moto del sistema in funzione dei vincoli di progetto, ottimizzando il tempo di ciclo complessivo Tc
- Valutare la necessità di vincolare la massa trasportata per evitare slittamenti durante la lavorazione (Peri la valutazione del coefficiente d'attrito si consideri un contatto acciaio /acciaio)
- Calcolare l'andamento in funzione del tempo della coppia e della potenza richiesta al motore
- Dimensionare il motoriduttore (tipologia di motore, taglia, potenza, coppia massima, coppia nominale, velocità massima, rapporto di riduzione, efficienza, ecc.)
- Fornire uno schizzo costruttivo del telaio di supporto, mettendo in evidenza le sedi dei cuscinetti

INGEGNERE INDUSTRIALE

I SESSIONE 2018 - 10 SETTEMBRE 2018

SEDE SVOLGIMENTO: POLITECNICO DI MILANO

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

PROVA PRATICA

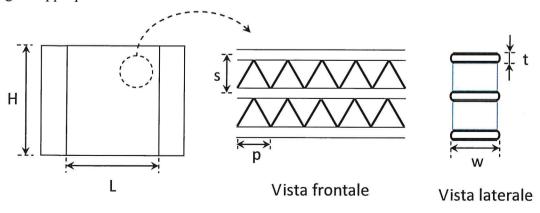
TEMA N. 9

Si proceda alla selezione dei materiali per produrre il radiatore di un autoveicolo, seguendo i punti specificati nel seguito.

I radiatore, di lunghezza L ed altezza H, è costituito da un impilamento di tubi a sezione non circolare, separati da un'alettatura ondulata, secondo lo schema illustrato nel disegno sottostante.

Si considerino assegnate le dimensioni mostrate nel disegno e riportate in tabella. Nel progetto iniziale, la distanza $s \ge 10$ mm, lo spessore delle alette ≥ 0.1 mm e quello della parete dei tubi ≥ 0.3 mm. Queste dimensioni possono essere variate, se la scelta del materiale lo richiede, purché l'efficienza dell'alettatura sia almeno 0,95 (si veda quanto riportato al punto 3). In particolare, si può modificare il numero di tubi e alette, tenendo costante l'altezza totale H.

- 1) Si definiscano i requisiti da imporre, in termini di proprietà dei materiali da selezionare, avendo l'obiettivo di rendere minimo il peso del radiatore.
- 2) Si considerino le tecnologie produttive atte a realizzare il radiatore e si includa l'idoneità dei materiali a queste lavorazioni tra i requisiti da valutare nella selezione.
- 3) Al fine di stimare l'effetto del materiale scelto sulla potenza termica trasferita dalla superficie alettata all'aria, si può valutare l'efficienza dell'alettatura η mediante l'espressione


$$\eta = [\tanh(\lambda)]/\lambda$$

$$\lambda^2 = 2hf^2/(k\delta)$$

dove $k, f \in \delta$ sono conduttività termica, lunghezza e spessore dell'aletta, rispettivamente, e h è il coefficiente di scambio convettivo. Per questo coefficiente, si può assumere il valore medio di $60 \text{ W m}^{-2} \text{ K}^{-1}$.

4) Si valuti potenza termica trasferita all'aria, esprimendola come potenza per unità di differenza di temperatura tra superficie calda e aria.

Per la selezione del materiale, si possono utilizzare i dati riportati nella tabella sottostante o altri che si ritengano appropriati.

H (mm)	L (mm)	p (mm)	t (mm)	w (mm)
382	330	11	2	22

Materiale	Densità (10 ³ kg m ⁻³)	Conduttività	Modulo di Young
		termica (W m ⁻¹ K ⁻¹)	(GPa)
1050 O	2,71	230	70
3005 O	2,73	160	69
6063 T6	2,70	200	71
7072 O	2,70	227	70
Cu ETP	8,94	395	125
Cu Zn 22 Al 2	8,45	136	110
AISI 304	7,95	16	196
Ti grado 2	4,51	18	102

Fonte: Cambridge Engineering Selector

INGEGNERE INDUSTRIALE

I SESSIONE 2018 - 10 SETTEMBRE 2018 SEDE SVOLGIMENTO: POLITECNICO DI MILANO

III COMMISSIONE - SETTORE INDUSTRIALE

SEZIONE A

PROVA PRATICA

TEMA N. 10

Nella produzione del dimetildiclorosilano ($C_2H_6Cl_2Si$) si utilizza come reagente il clorometano (CH_3Cl). Il clorometano viene stoccato in serbatoi cilindrici orizzontali ad una pressione di 6.6 bara, pieni all'85%. All'interno di un capannone di dimensioni $40m \times 30m \times 20m$ è presente un serbatoio di diametro 3m e lunghezza 8m.

A seguito di un'analisi di rischio, vengono selezionati i seguenti scenari incidentali:

- Rilascio orizzontale di clorometano a seguito di rottura della valvola posta sul fondo del serbatoio. Il diametro del tubo in uscita è di 5 cm. Si calcolino:
 - La portata scaricata, considerando efflusso liquido
 - Una volta uscita dal serbatoio, il clorometano subisce un flash.
 Calcolare la frazione di flash e la dimensione massima di pozza che potrebbe formarsi
 - Sapendo che il serbatoio è circondato da un bacino di 85 m² si calcoli la portata di evaporazione. Valutare la concentrazione di clorometano all'interno del capannone sapendo che l'impianto di ventilazione garantisce 1.5 ricambi ora
- Jet-fire verticale a seguito di un foro di 5 mm sul serbatoio sopra il pelo libero. Si calcolino:
 - Il livello di irraggiamento raggiunto a una distanza orizzontale di 5 metri dal foro. Si utilizzi un modello puntiforme
- A seguito di un incendio esterno si ha l'apertura del disco di rottura da 75mm. L'efflusso viene considerato gassoso e tutta la massa del serbatoio viene inviata in torcia. Si calcolino:
 - La portata gassosa di efflusso (temperatura gas = 120° C)
 - Dimensionamento della torcia per avere 4 kW/m² a una distanza L=25m dal bordo esterno della torcia. Considerare Mach=0.75 e un'efficienza di combustione di 0.45

Dati clorometano

$$Cp\left[\frac{J}{kmol \cdot K}\right] = 1.875E4 + 80.8 * T[K]$$
 $\Delta H_c = -1.275E6 \frac{J}{mol}$

$$\Delta H_c = -1.275E6 \,\, \frac{J}{mol}$$

$$\log_{10} P[mmHg] = 6.9944 - \frac{902.45}{T[^{\circ}C] + 243.61}$$

$$PM = 50.5 \; \frac{g}{mol}$$

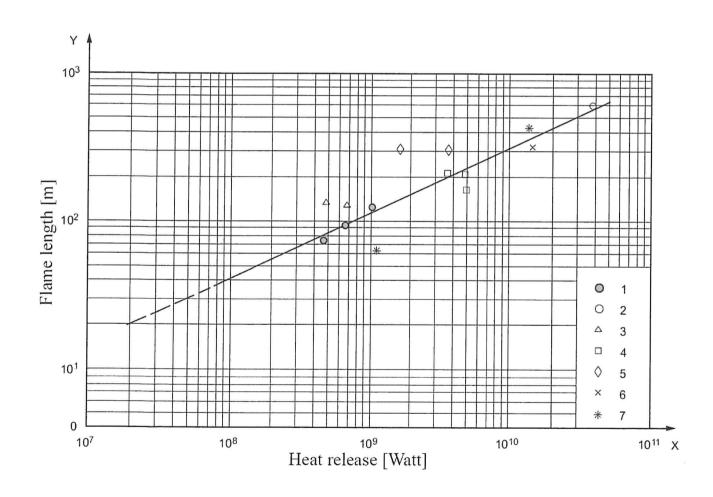
$$\Delta H_f^0 = -8.196E4 \, \frac{J}{mol}$$

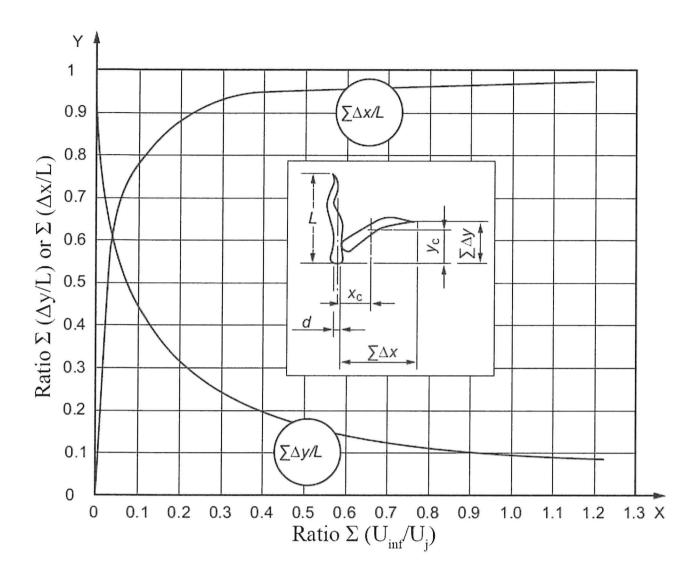
$$\alpha_{st} = 0.942$$
 $c_{st} = 0.123$ $\frac{T_{ad}}{T_{cont}} = 7.8$

$$\Delta G_f^0 = -5.844E4 \, \frac{J}{mol}$$

$$\gamma = 1.3$$

Altri dati


$$T_{air} = 30^{\circ} C$$


$$\tau_{oir} = 0.7$$

$$T_{air} = 30^{\circ} C$$

$$\tau_{air} = 0.7$$

$$u_{vento} = 10 \frac{m}{s}$$

